EE 330 Lecture 11

Copper Interconnects

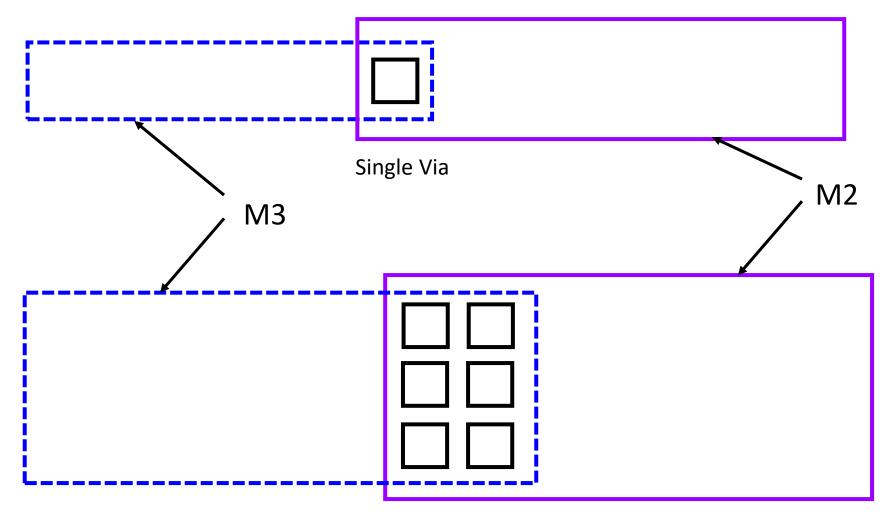
Resistance and Capacitance in Interconnects

Fall 2023 Exam Schedule

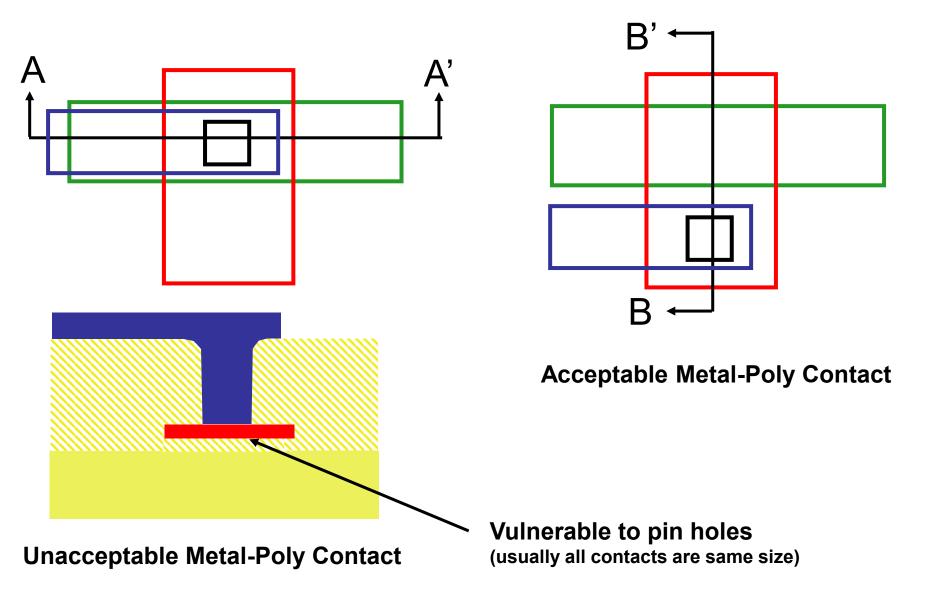
- Exam 1 Friday Sept 22
- Exam 2 Friday Oct 20
- Exam 3 Friday Nov. 17
- Final Monday Dec 11 12:00 2:00 p.m.

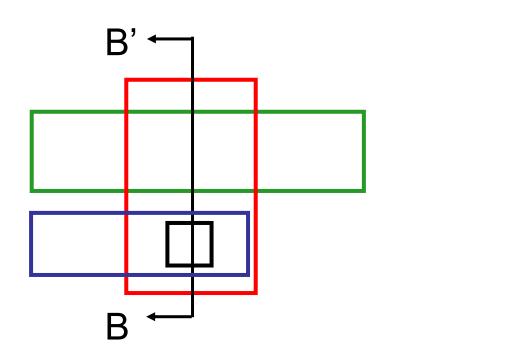
IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Ion Implantation
- Etching
- Diffusion
- Oxidation
- Epitaxy
- Polysilicon
- Planarization

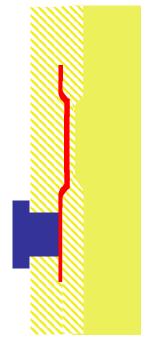


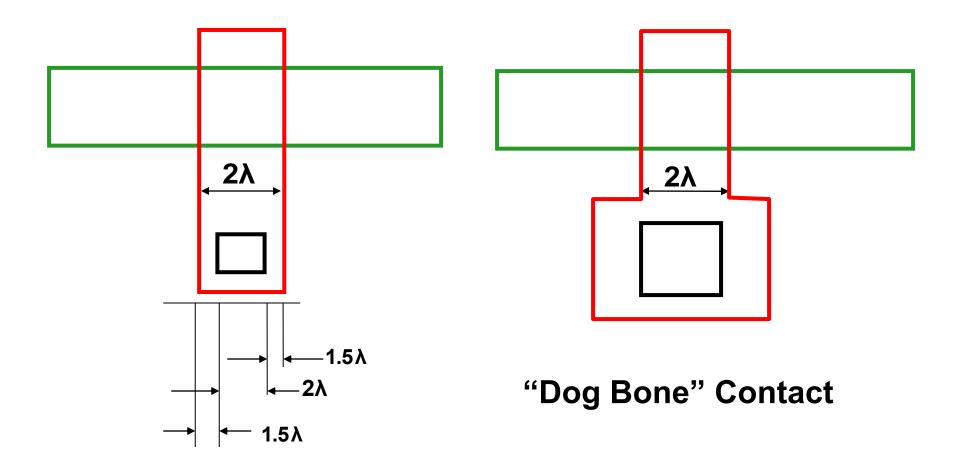
Contacts, Interconnect and Metalization

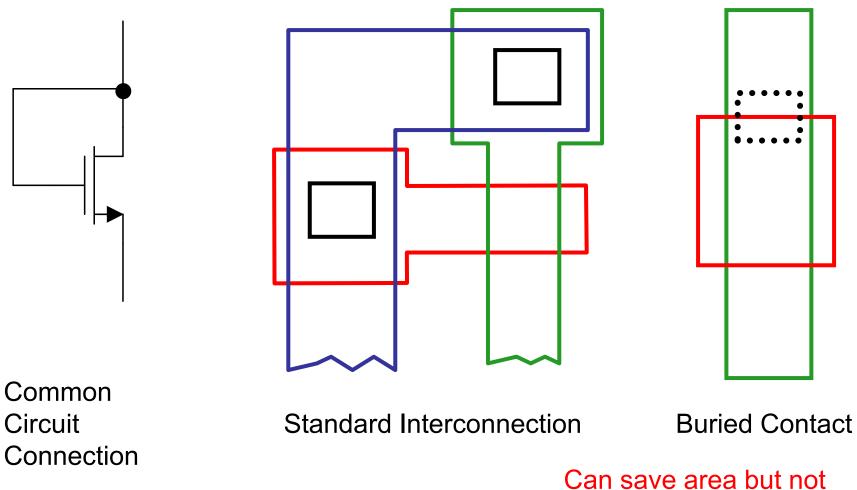

Contacts, Interconnect and Metallization


- Contacts (vias) used to identify where vertically stacked layers connect
- Contacts (vias) used to identify which vertically stacked layers connect
- Term "vias" usually refers to metal-metal connections and "contact" where one layer is not metal
- Contacts and vias usually of a fixed size
 - All etches reach bottom at about the same time
 - Multiple contacts widely used (to reduce resistance)
 - Contacts not allowed to Poly on thin oxide in most processes
 - Dog-bone often needed for minimum-length devices
 - Vias usually only allowed between adjacent metal layers

Vias




Multiple Vias



Acceptable Metal-Poly Contact

Design Rule Violation

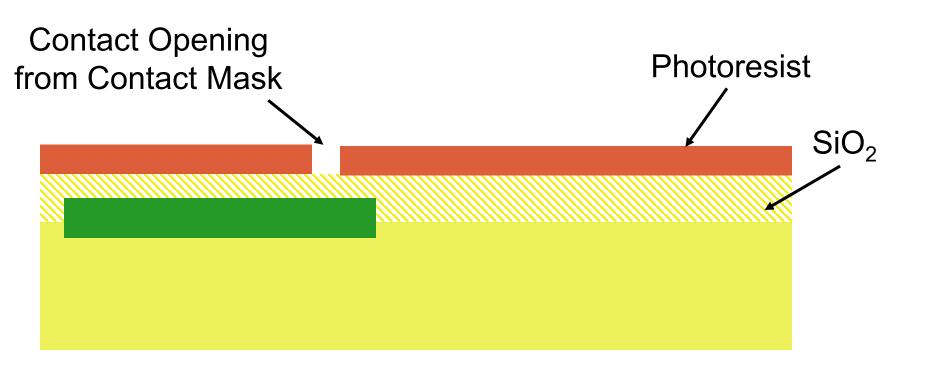
allowed in many processes

Metalization

- Aluminum widely used for interconnect
- Copper often replacing aluminum in recent processes
- Must not exceed maximum current density
 around 1ma/u for aluminum and copper
- Ohmic Drop must be managed
- Parasitic Capacitances must be managed
- Interconnects from high to low level metals require connections to each level of metal
- Stacked vias permissible in some processes

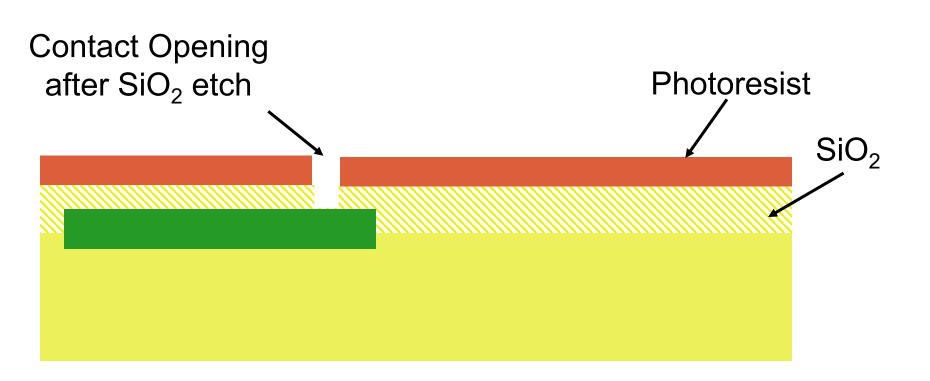
Metalization

Aluminum

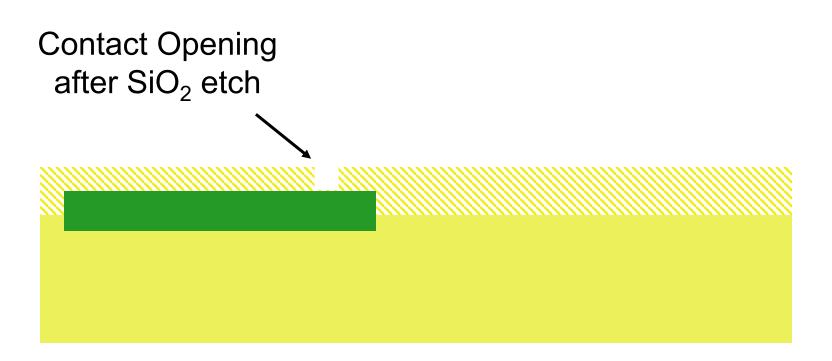

- Aluminum is usually deposited uniformly over entire surface and etched to remove unwanted aluminum
- Mask is used to define area in photoresist where aluminum is to be removed

Copper

- Plasma etches not effective at removing copper because of absence of volatile copper compounds
- Barrier metal layers needed to isolate silicon from migration of copper atoms
- Damascene or Dual-Damascene processes used to pattern copper

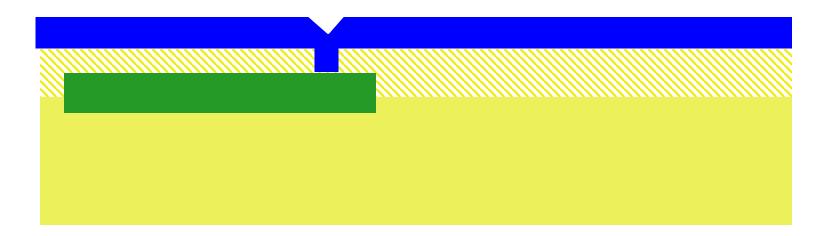

Consider Metal 1 (lowest level of metal)

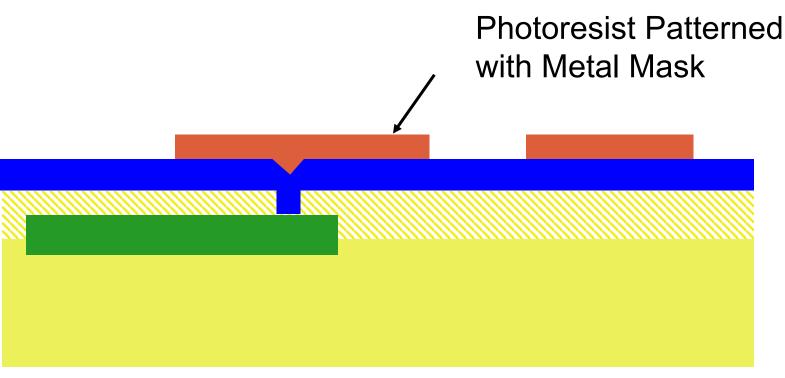
- Will contact to n-active
- Consider process with LOCOS



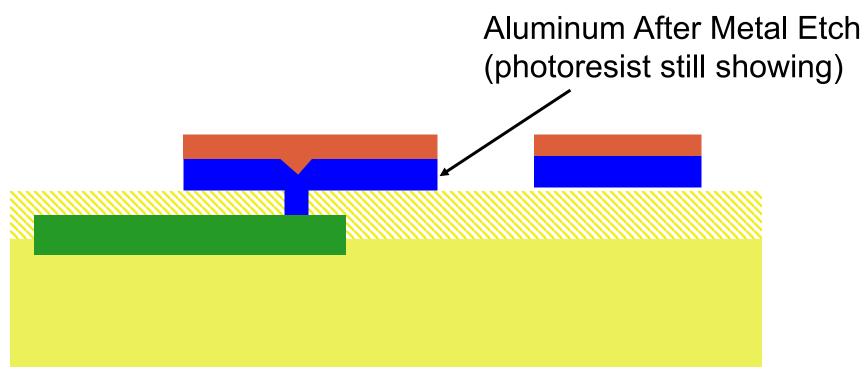
Consider Metal 1 (lowest level of metal)

- Will contact to n-active
- Consider process with LOCOS


Consider Metal 1 (lowest level of metal)


After Photoresist Removed

Consider Metal 1 (lowest level of metal)


Metal Applied to Entire Surface

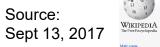
Consider Metal 1 (lowest level of metal)

Consider Metal 1 (lowest level of metal)

Copper Interconnects

Limitations of Aluminum Interconnects

- Electromigration
- Conductivity not real high


Relevant Key Properties of Copper

- Reduced electromigration problems at given current level
- Better conductivity

Challenges of Copper Interconnects

- Absence of volatile copper compounds (can not use plasma etch)
- Copper diffuses into surrounding materials (barrier metal required)

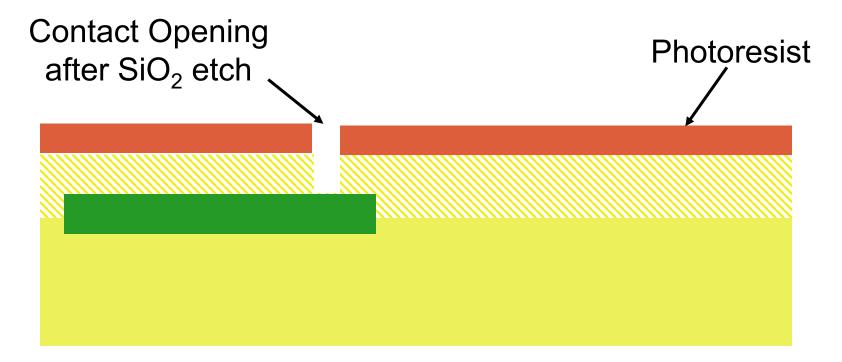
Material 🗢	ρ (Ω·m) at 20 °C \$	σ (S/m) at 20 °C	coefficient [[] (K ⁻¹)
Carbon (graphene)	1.00 × 10 ⁻⁸	1.00 × 10 ⁸	-0.0002
Silver	1.59 × 10 ⁻⁸	6.30 × 10 ⁷	0.0038
Copper	1.68 × 10 ⁻⁸	5.96 × 10 ⁷	0.003862
Annealed copper ^[note 2]	1.72 × 10 ^{−8}	5.80 × 10 ⁷	0.00393
Gold ^[note 3]	2.44 × 10 ⁻⁸	4.10 × 10 ⁷	0.0034
Aluminium ^[note 4]	2.82 × 10 ⁻⁸	3.50 × 10 ⁷	0.0039
Calcium	3.36 × 10 ⁻⁸	2.98 × 10 ⁷	0.0041
Tungsten	5.60 × 10 ⁻⁸	1.79 × 10 ⁷	0.0045
Zinc	5.90 × 10 ⁻⁸	1.69 × 10 ⁷	0.0037
Nickel	6.99 × 10 ⁻⁸	1.43 × 10 ⁷	0.006
Lithium	9.28 × 10 ⁻⁸	1.08 × 10 ⁷	0.006
Iron	9.71 × 10 ⁻⁸	1.00 × 10 ⁷	0.005
Platinum	1.06 × 10 ⁻⁷	9.43 × 10 ⁶	0.00392
Tin	1.09 × 10 ⁻⁷	9.17 × 10 ⁶	0.0045
Carbon steel (1010)	1.43 × 10 ⁻⁷	6.99 × 10 ⁶	

10 B

Electrical resistivity and conductivity

Lead	2.20×10^{-7}	4.55 × 10 ⁶	0.0039
Titanium	4.20×10^{-7}	2.38 × 10 ⁶	0.0038
Grain oriented electrical steel	4.60×10^{-7}	2.17 × 10 ⁶	
Manganin	4.82 × 10 ⁻⁷	2.07 × 10 ⁶	0.000002
Constantan	4.90×10^{-7}	2.04 × 10 ⁶	0.000008
Stainless steel ^[note 5]	6.90 × 10 ⁻⁷	1.45 × 10 ⁶	0.00094
Mercury	9.80 × 10 ⁻⁷	1.02 × 10 ⁶	0.0009
Nichrome ^[note 6]	1.10 × 10 ⁻⁶	6.7 × 10 ⁵	0.0004
GaAs	1.00×10^{-3} to 1.00×10^{8}	1.00 × 10 ⁻⁸ to 10 ³	
Carbon (amorphous)	5.00×10^{-4} to 8.00×10^{-4}	1.25 × 10 ³ to 2 × 10 ³	-0.0005
Carbon (graphite) ^[note 7]	2.50×10^{-6} to 5.00×10^{-6} basal plane 3.00×10^{-3} ⊥basal plane	2.00 × 10 ⁵ to 3.00 × 10 ⁵ ∥basal plane 3.30 × 10 ² ⊥basal plane	
PEDOT:PSS	2 × 10 ⁻⁶ to 1 × 10 ⁻¹	1 × 10 ¹ to 4.6 × 10 ⁵	?
Germanium ^[note 8]	4.60 × 10 ⁻¹	2.17	-0.048
Sea water ^[note 9]	2.00 × 10 ⁻¹	4.80	
Swimming pool water ^[note 10]	3.33×10^{-1} to 4.00×10^{-1}	0.25 to 0.30	

Silicon ^[note 8]	6.40×10^2	1.56 × 10 ^{−3}	-0.075
Wood (damp)	1.00×10^3 to 1.00×10^4	10 ⁻⁴ to 10 ⁻³	
Deionized water ^[note 12]	1.80 × 10 ⁵	5.50 × 10 ⁻⁶	
Glass	1.00×10^{11} to 1.00×10^{15}	10 ⁻¹⁵ to 10 ⁻¹¹	?
Hard rubber	1.00 × 10 ¹³	10 ⁻¹⁴	?
Wood (oven dry)	1.00 × 10 ¹⁴ to 1.00 × 10 ¹⁶	10 ⁻¹⁶ to 10 ⁻¹⁴	
Sulfur	1.00 × 10 ¹⁵	10 ⁻¹⁶	?
Air	1.30×10^{14} to 3.30×10^{14}	3×10^{-15} to 8×10^{-15}	
Carbon (diamond)	1.00 × 10 ¹²	~10 ⁻¹³	
Fused quartz	7.50 × 10 ¹⁷	1.30 × 10 ⁻¹⁸	?
PET	1.00 × 10 ²¹	10 ⁻²¹	?
Teflon	1.00×10^{23} to 1.00×10^{25}	10^{-25} to 10^{-23}	?

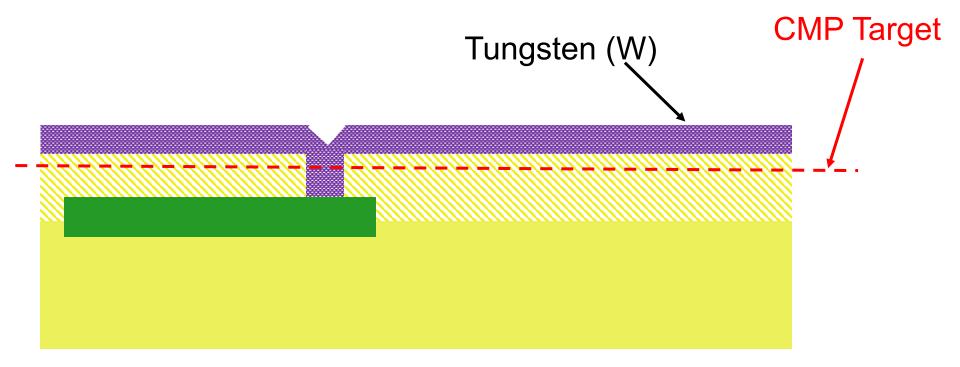

Copper Interconnects

Practical methods of realizing copper interconnects took many years to develop

Copper interconnects widely used in some processes today

Consider Metal 1 (lowest level of metal)

Damascene Process

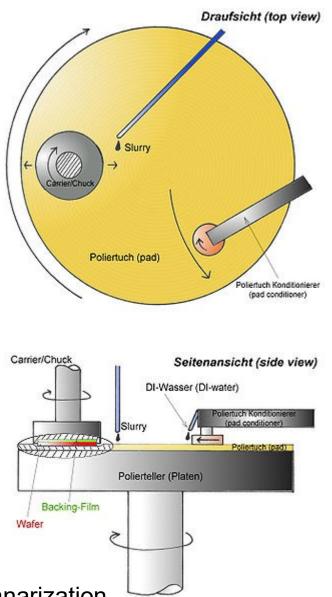

Consider Metal 1 (lowest level of metal)

Damascene Process

Contact Opening after SiO₂ etch

Consider Metal 1 (lowest level of metal)

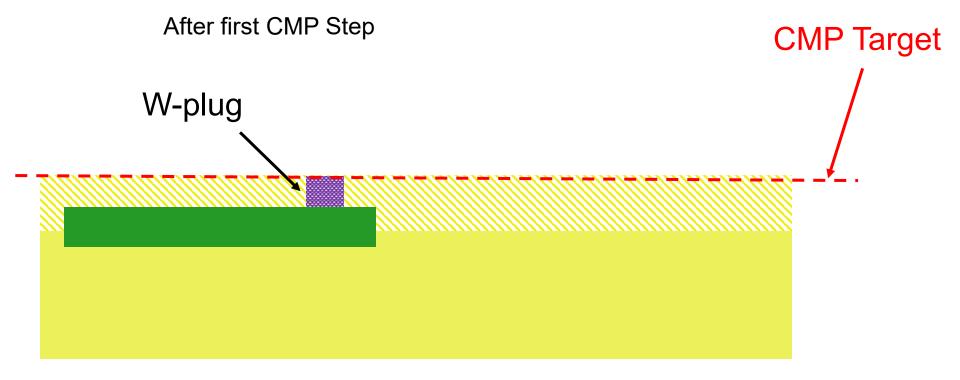
Damascene Process



W has excellent conformality when formed from WF_6

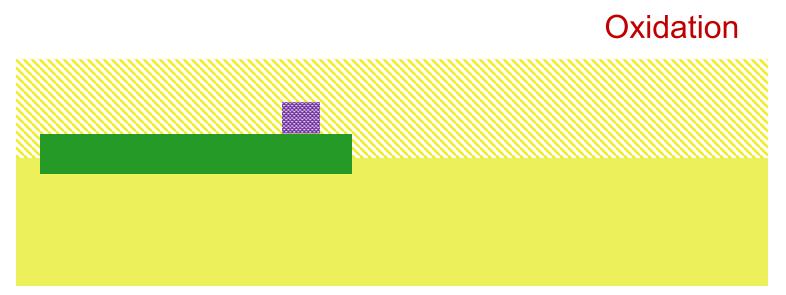
Applied with CVD $WF_6+3H_2 \rightarrow W+6HF$

Chemical-Mechanical Planarization (CMP)


- Polishing Pad and Wafer Rotate in non-concentric pattern to thin, polish, and planarize surface
- Abrasive/Chemical polishing
- Depth and planarity are critical

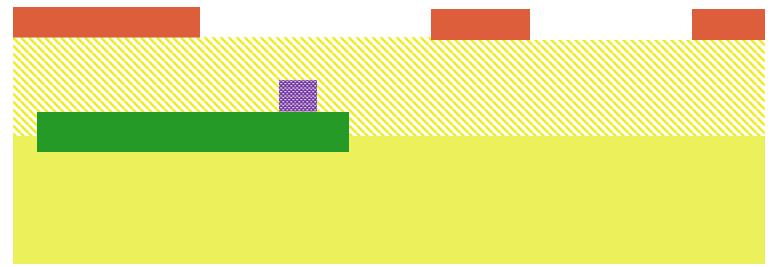
Acknowledgement: http://en.wikipedia.org/wiki/Chemical-mechanical_planarization

Consider Metal 1 (lowest level of metal)


Damascene Process

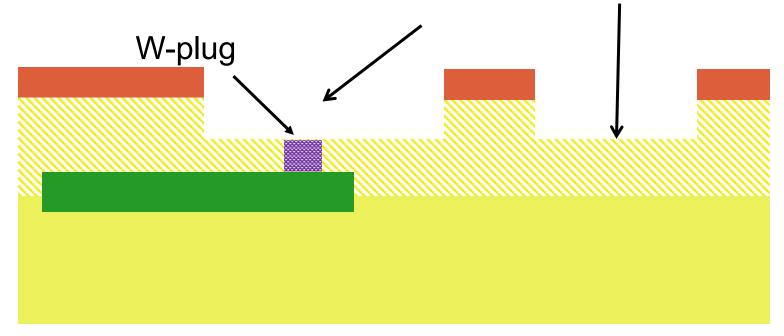
Consider Metal 1 (lowest level of metal)

Damascene Process


After first CMP Step

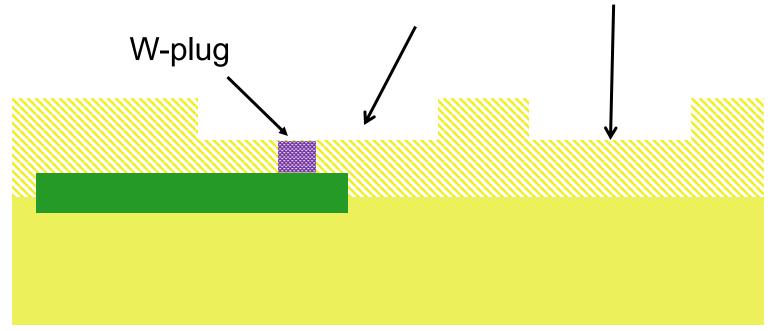
Consider Metal 1 (lowest level of metal)

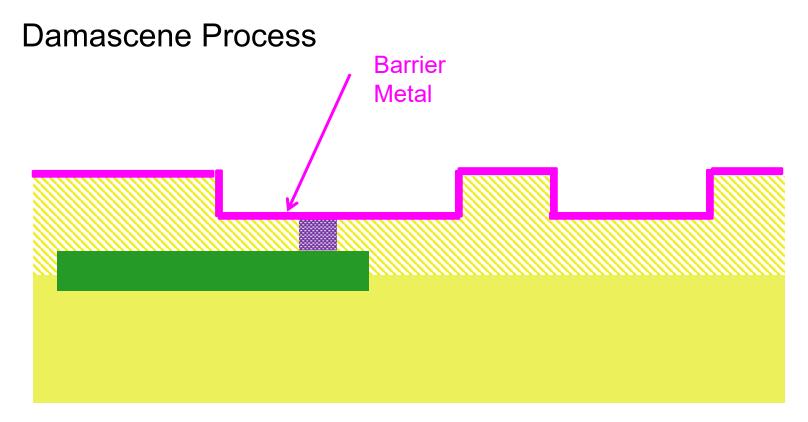
Damascene Process


Photoresist Patterned with Metal Mask Defines Trench

Consider Metal 1 (lowest level of metal)

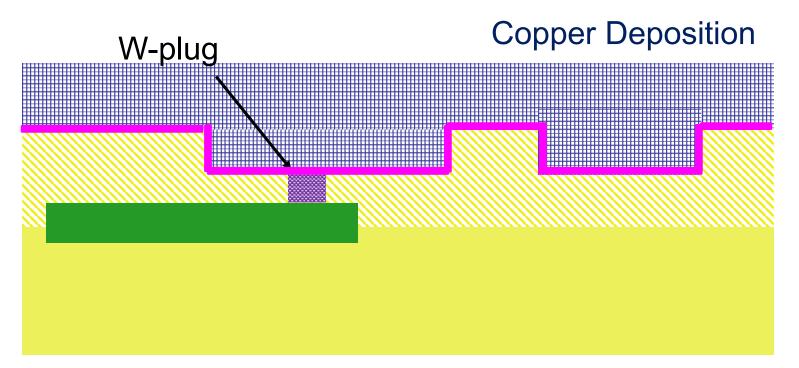
Damascene Process

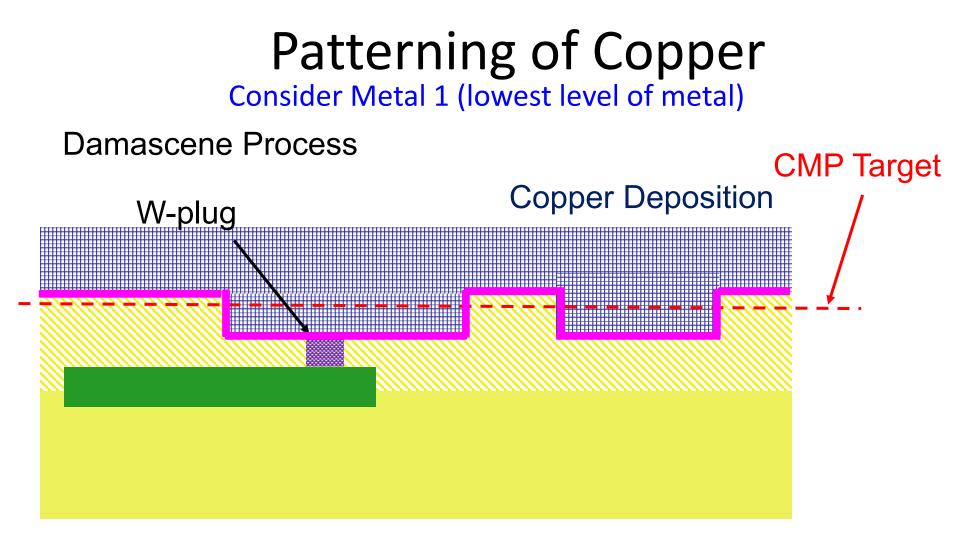

Shallow Trench after Etch


Consider Metal 1 (lowest level of metal)

Damascene Process

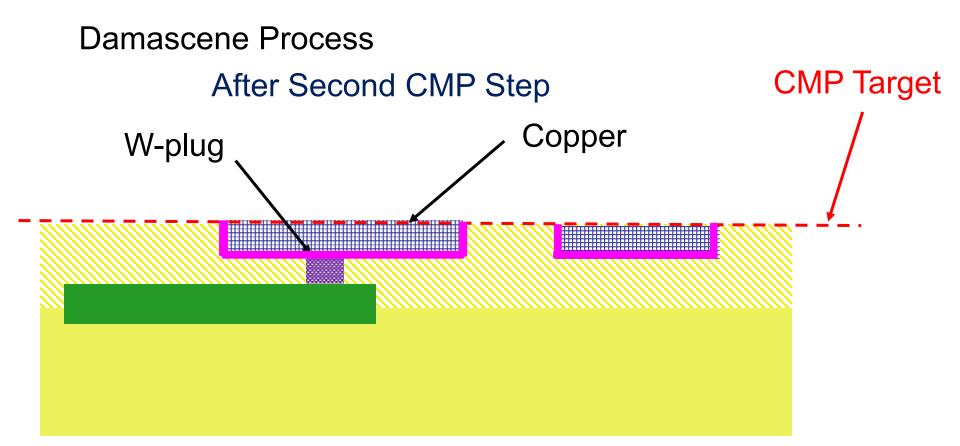
Shallow Trench after Etch


Consider Metal 1 (lowest level of metal)



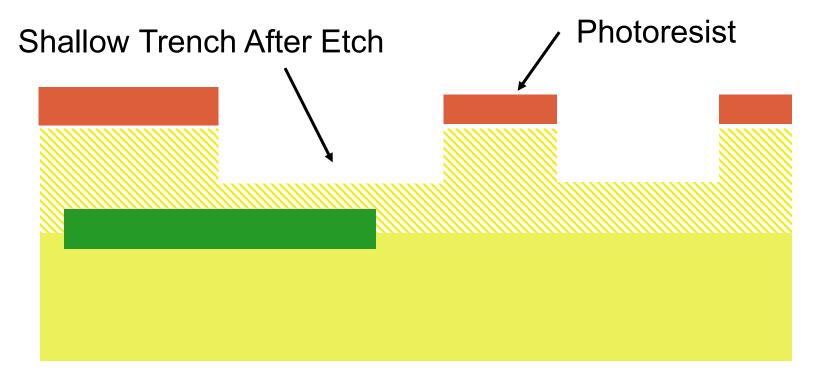
(Barrier metal added before copper to contain the copper atoms)

Consider Metal 1 (lowest level of metal)

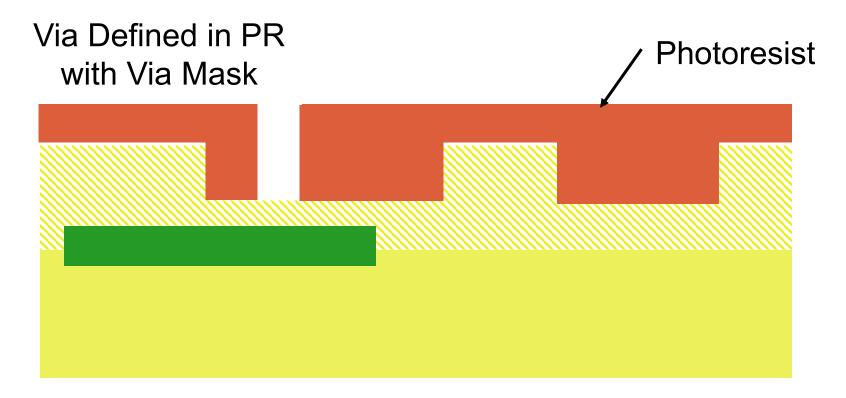

Damascene Process

Copper is deposited or electroplated (Barrier Metal Used for Electroplating Seed)

Consider Metal 1 (lowest level of metal)


Consider Metal 1 (lowest level of metal)

- **Dual-Damascene Process**
- Shallow Trench Defined in PR with Metal Mask

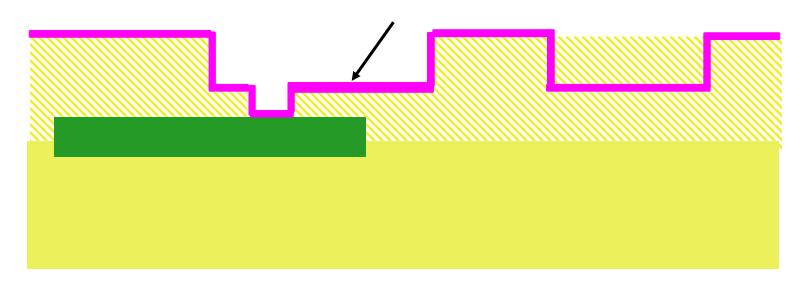

Patterning of Copper Consider Metal 1 (lowest level of metal)

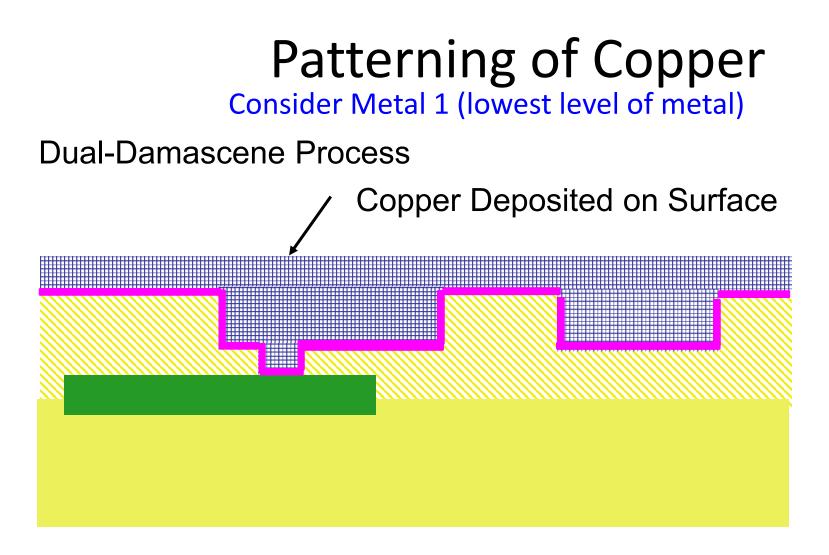
Dual-Damascene Process

Patterning of Copper Consider Metal 1 (lowest level of metal)

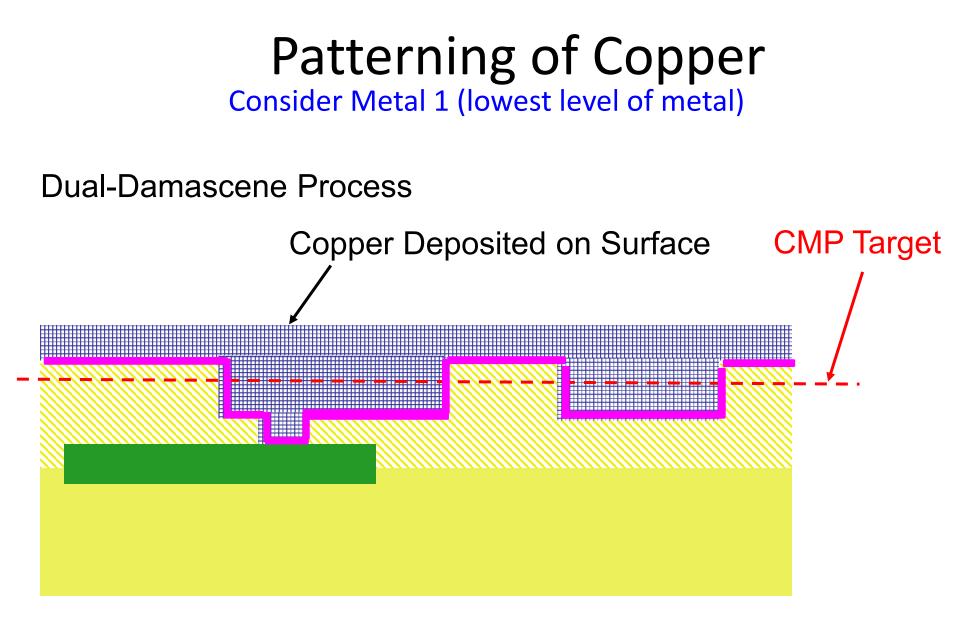
Dual-Damascene Process

Patterning of Copper Consider Metal 1 (lowest level of metal) **Dual-Damascene** Process Via Etch Defines **Photoresist Contact Region**

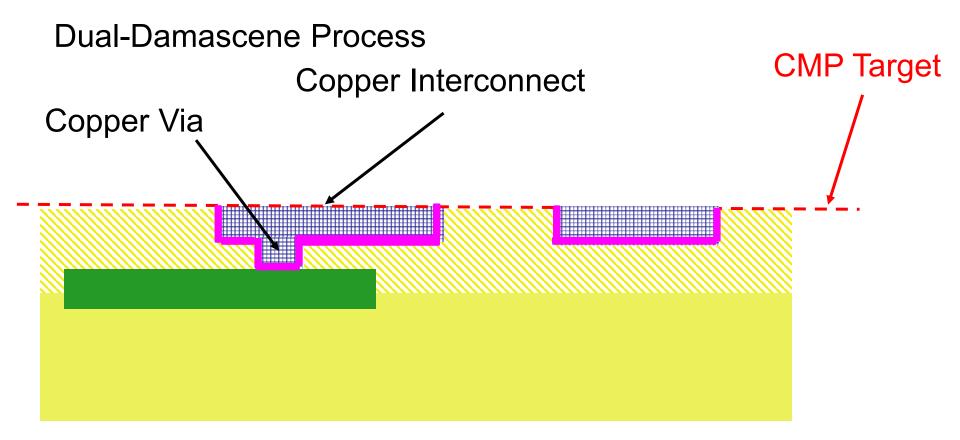

Patterning of Copper Consider Metal 1 (lowest level of metal) **Dual-Damascene** Process Via Etch Defines **Contact Region**


Patterning of Copper

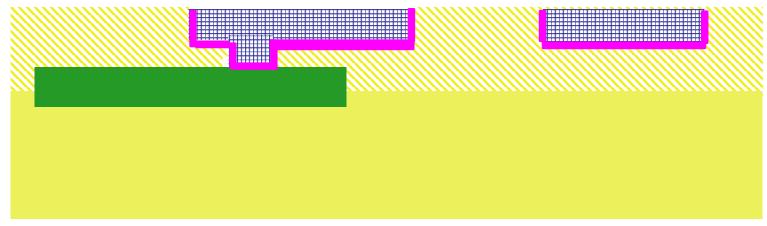
Consider Metal 1 (lowest level of metal)


Dual-Damascene Process

Barrier Metal (used for electroplating seed)



Copper is deposited or electroplated (Barrier Metal Used for Electroplating Seed)

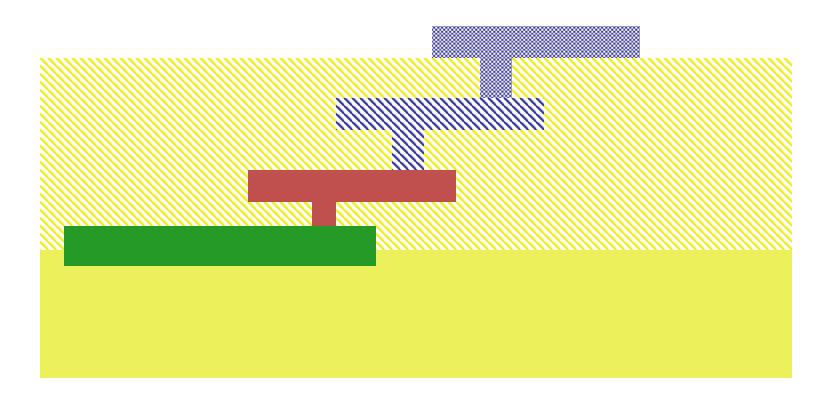


Patterning of Copper

Consider Metal 1 (lowest level of metal)

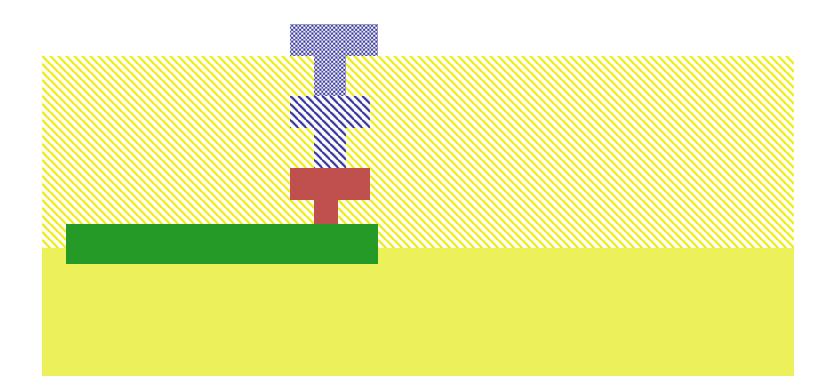
Patterning of Copper

Both Damascene Processes Realize Same Structure


Damascene Process

Two Dielectric Deposition Steps Two CMP Steps Three Metal Deposition Steps Two Dielectric Etches W-Plug

Dual-Damascene Process


One Dielectric Deposition Step Two CMP Steps Two Metal Deposition Steps Two Dielectric Etches Via formed with metal step

Multiple Level Interconnects

3-rd level metal connection to n-active without stacked vias

Multiple Level Interconnects

3-rd level metal connection to n-active with stacked vias

Interconnect Layers May Vary in Thickness or Be Mostly Uniform

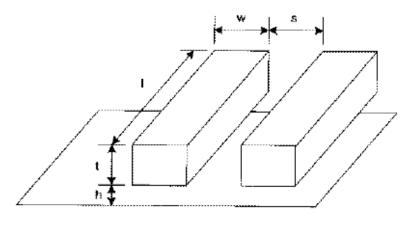
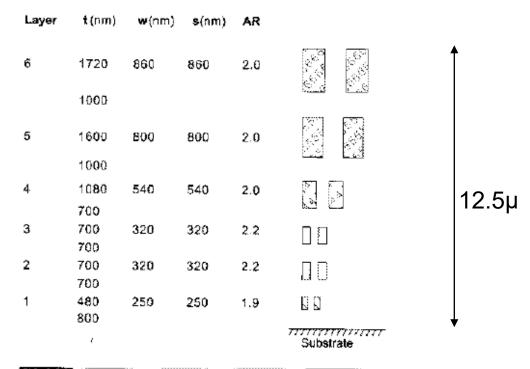
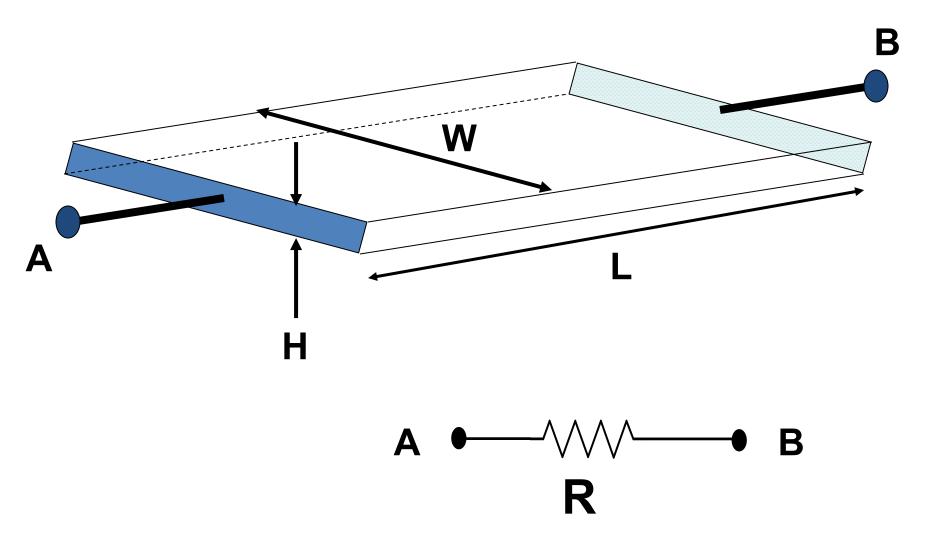



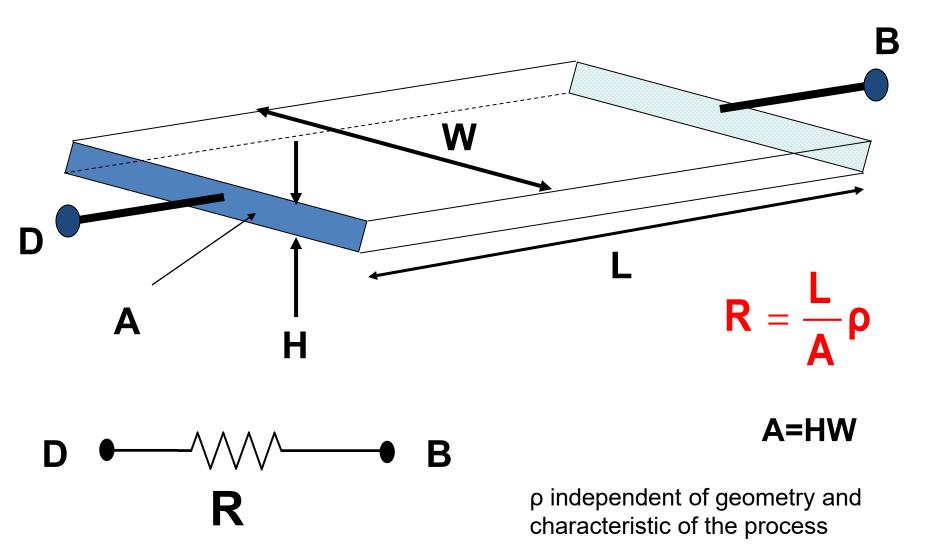
FIG 4.30 Interconnect geometry

Interconnects

Metal is preferred interconnect


Because conductivity is high

- Parasitic capacitances and resistances of concern in all interconnects
- Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
- Diffusion used for short interconnects
 - Parasitic capacitances are high


Interconnects

- Metal is preferred interconnect
 - Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
 - Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
 - Diffusion used for short interconnects
 - Parasitic capacitances are high

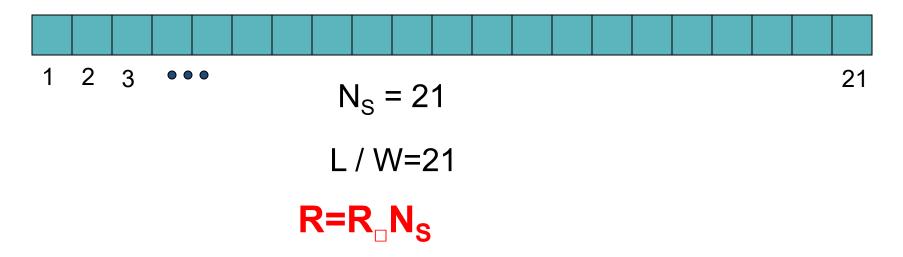
Resistance in Interconnects

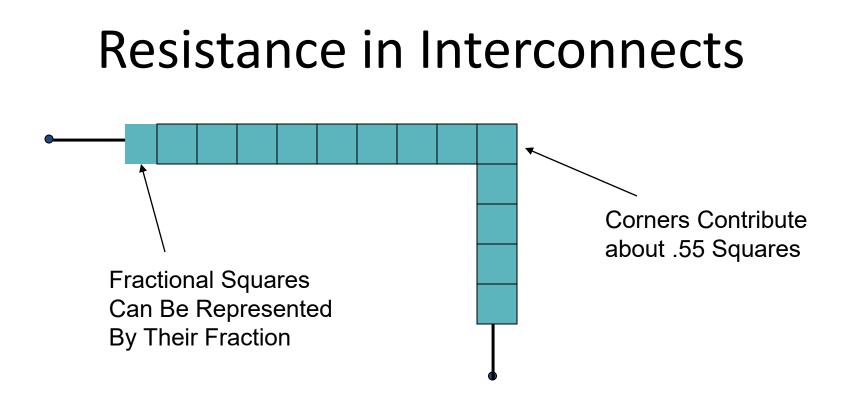
Resistance in Interconnects

Resistance in Interconnects R W/ Α $\mathbf{R} = \frac{\mathbf{L}}{\mathbf{A}}\mathbf{\rho} = \frac{\mathbf{L}}{\mathbf{W}} \left| \frac{\mathbf{\rho}}{\mathbf{H}} \right|$ Η

H << W and H << L in most processes Interconnect behaves as a "thin" film

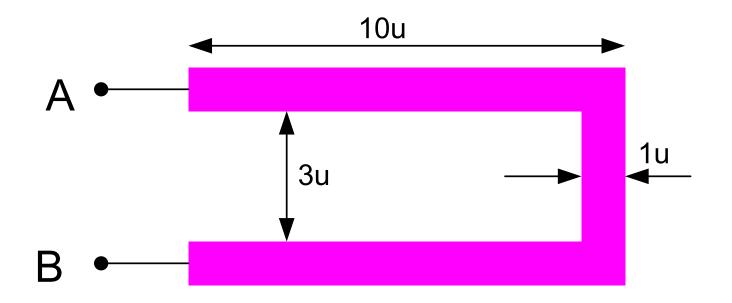
Sheet resistance often used instead of conductivity to characterize film

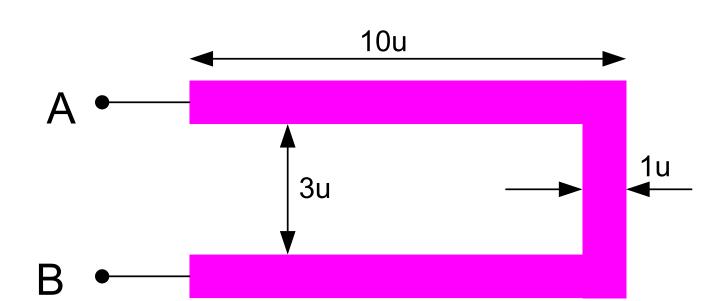

 $\mathbf{R}_{\Box} = \boldsymbol{\rho} / \mathbf{H} \qquad \mathbf{R} = \mathbf{R}_{\Box} [\mathbf{L} / \mathbf{W}]$


Resistance in Interconnects

R=R_{_}[L / W]

The "Number of Squares" approach to resistance determination in thin films

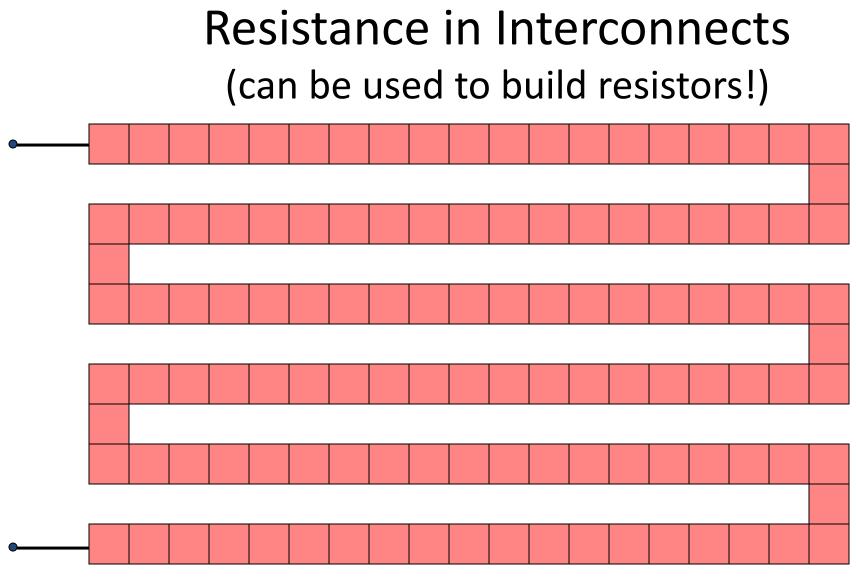



The "squares" approach is not exact but is good enough for calculating resistance in almost all applications

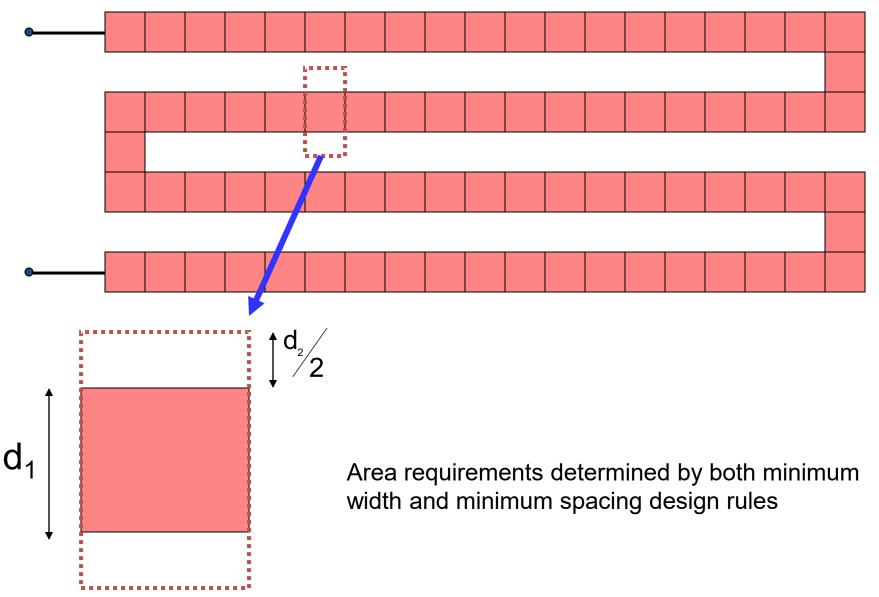
In this example:

Example:

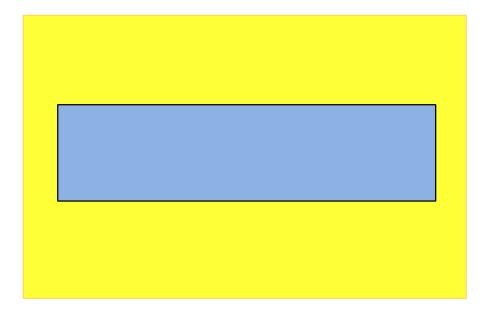
The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is 40 Ω/\Box , determine the resistance between nodes A and B.



$$R_{AB} = R_{\Box}N_{S} = 40x22.1 = 884\Omega$$

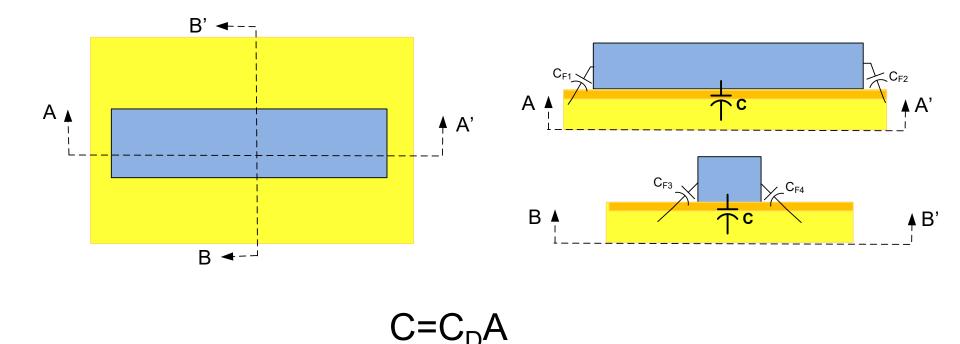

Solution

•



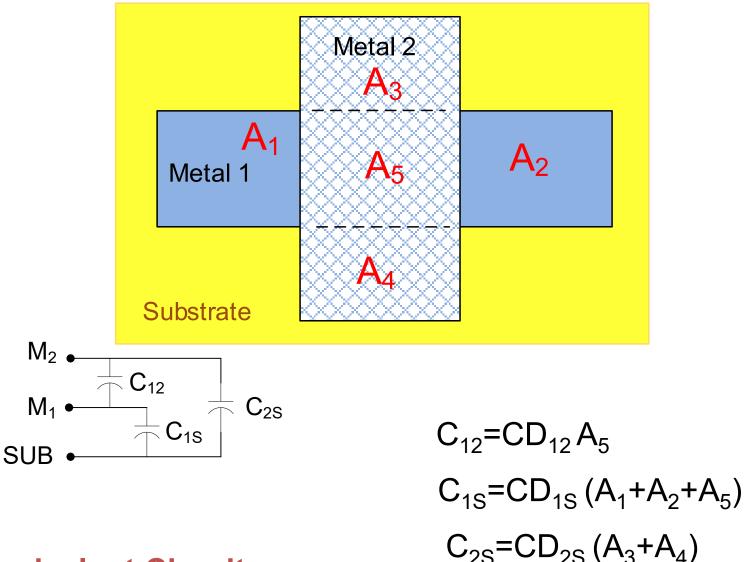
- Serpentine often used when large resistance <u>required</u>
- Polysilicon or diffusion often used for resistor creation
- Effective at managing the aspect ratio of large resistors
- May include hundreds or even thousands of squares

Resistance in Interconnects (can be used to build resistors!)


Capacitance in Interconnects

 $C=C_DA$

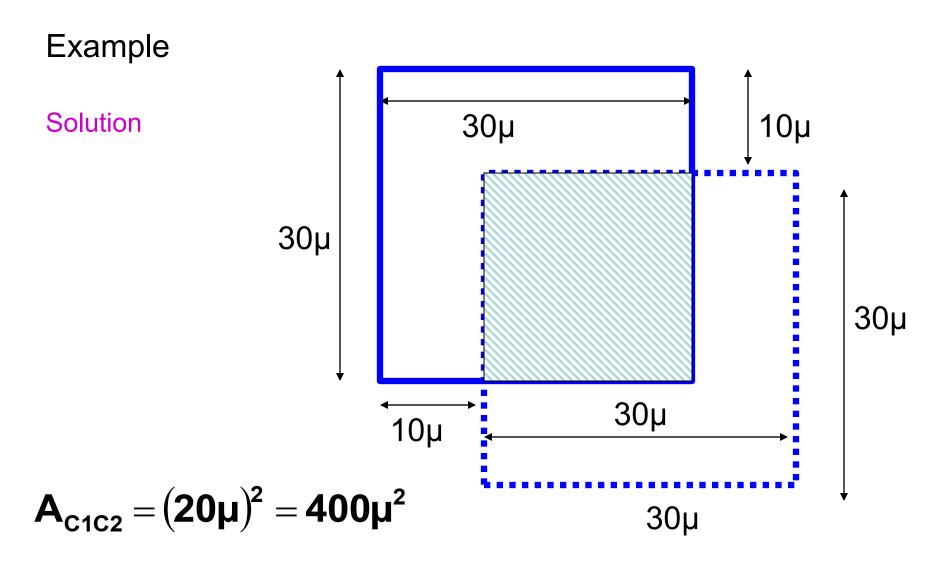
 C_D is the capacitance density and A is the area of the overlap (actually there is also a small fringe capacitance that has been neglected)


Capacitance in Interconnects

fringe capacitances denoted by C_{F1} , C_{F2} , C_{F3} and C_{F4}

 $C_F = C_{F1} + C_{F2} + C_{F3} + C_{F2}$ is usually small compared to C


Capacitance in Interconnects



Equivalent Circuit

Example

Two metal layers, Metal 1 and Metal 2, are shown. Both are above field oxide. Determine the capacitance between Metal 1 and Metal 2. Assume the process has capacitance densities from M_1 to substrate of .05fF/u², from M_1 to M_2 of .07fF/u² and from M_2 to substrate of .025fF/u².

The capacitance density from M_1 to M_2 is .07fF/u²

$$C_{12} = A_{C1C2} \bullet C_{D12} = 400 \mu^2 \bullet 0.07 \text{fF}/\mu^2 = 28 \text{fF}$$

Capacitance and Resistance in Interconnects

 See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org

RUN: T6AU TECHNOLOGY: SCN05 VENDOR: AMIS FEATURE SIZE: 0.5 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSISTOR	PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM		3.0/0.6			
Vth			0.79	-0.92	volts
SHORT		20.0/0.6			
Idss			446	-239	uA/um
Vth			0.68	-0.90	volts
Vpt			10.0	-10.0	volts
WIDE		20.0/0.6			
Ids0			< 2.5	< 2.5	pA/um
LARGE		50/50			
Vth			0.68	-0.95	volts
Vjbkd			10.9	-11.6	volts
Ijlk			<50.0	<50.0	pA
Gamma			0.48	0.58	V^0.5
K' (Uo*Cox	(/2)		56.4	-18.2	uA/V^2
Low-field	Mobility		463.87	149.69	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

Design Technology	XL (um)	XW (um)

SCMOS_SUBM (lambda=0.30)	0.10	0.00
SCMOS (lambda=0.35)	0.00	0.20

FOX TRANSISTORS Vth		TE ly	N+ACTI >15.					
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ 83.5 64.9 142	P+ 105.3 149.7	POLY 23.5 17.3	PLY2_HR 999	POLY2 44.2 29.2	M1 0.09	M2 0.10 0.97	UNITS ohms/sq ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance		M3 0.05 0.79	N\PLY 824	N_W 816	UNI ohn ohn	ns/sq		

COMMENTS: N\POLY is N-well under polysilicon.

Note: substrate for p+ is the n-well

	CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	МЗ	N W	UNITS
	Area (substrate)	425	731	84		27	12	7	37	aF/um^2
	Area (N+active)			2434		35	16	11		aF/um^2
	Area (P+active)			2335						aF/um^2
•	Area (poly)				938	56	15	9		aF/um^2
•	Area (poly2)					49				aF/um^2
•	Area (metal1)						31	13		aF/um^2
	Area (metal2)							35		aF/um^2
	Fringe (substrate)	344	238			49	33	23		aF/um
	Fringe (poly)					59	38	28		aF/um
	Fringe (metal1)						51	34		aF/um
	Fringe (metal2)							52		aF/um
	Overlap (N+active)			232						aF/um
	Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	к		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Voh (100 uA)	2.0	4.85	volts
Vinv	2.0	2.46	volts
Gain	2.0	-19.72	
Ring Oscillator Freq.			
DIV256 (31-stg,5.0V)		95.31	MHz
D256_WIDE (31-stg,5.0V)		147.94	MHz
Ring Oscillator Power			
DIV256 (31-stg,5.0V)			uW/MHz/gate
D256_WIDE (31-stg,5.0V)		1.01	uW/MHz/gate

COMMENTS: SUBMICRON

□ T6AU SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: Jan 11/07			
* LOT: T6AU	WAF:	7101	
 Temperature parameters 	=Default		
.MODEL CMOSN NMOS (LEVEL = 49
+VERSION = 3.1	TNOM	= 27	TOX = 1.42E-8
+XJ = 1.5E-7	NCH	= 1.7E17	VTH0 = 0.629035
+K1 = 0.8976376	K2	= -0.09255	K3 = 24.0984767
+K3B = -8.2369696	WO	= 1.041146E-8	NLX = 1E-9
+DVTOW = 0	DVT1W	= 0	DVT2W = 0
+DVT0 = 2.7123969	DVT1	= 0.4232931	DVT2 = -0.1403765
+U0 = 451.2322004	UA	= 3.091785E-13	UB = 1.702517E-18
+UC = 1.22401E-11	VSAT	= 1.715884E5	A0 = 0.6580918
+AGS = 0.130484	BO	= 2.446405E-6	B1 = 5E-6
+KETA = -3.043349E-3	A1	= 8.18159E-7	A2 = 0.3363058
+RDSW = 1.367055E3	PRWG	= 0.0328586	PRWB = 0.0104806
+WR = 1	WINT	= 2.443677E-7	LINT = 6.999776E-8
+XL = 1E-7	XW	= 0	DWG = -1.256454E-8
+DWB = 3.676235E-8	VOFF	= -1.493503E-4	NFACTOR = 1.0354201
+CIT = 0	CDSC	= 2.4E-4	CDSCD = 0
+CDSCB = 0	ETAO	= 2.342963E-3	ETAB = -1.5324E-4
+DSUB = 0.0764123	PCLM	= 2.5941582	PDIBLC1 = 0.8187825
+PDIBLC2 = 2.366707E-3	PDIBLCB	= -0.0431505	DROUT = 0.9919348
+PSCBE1 = 6.611774E8	PSCBE2	= 3.238266E-4	PVAG = 0
+DELTA = 0.01	RSH	= 83.5	MOBMOD = 1

+PRT	= 0	UTE	= -1.5	KT1	= -0.11
+KT1L	= 0	KT2	= 0.022	UA1	= 4.31E-9
+0B1	= -7.61E-18	UC1	= -5.6E-11	AT	= 3.3E4
+WL	= 0	WLN	= 1	WW	= 0
+WWN	= 1	WWL	= 0	LL	= 0
+LLN	= 1	LW	= 0	LWN	= 1
+LWL	= 0	CAPMOD	= 2	XPART	= 0.5
+CGDO	= 2.32E-10	CGSO	= 2.32E-10	CGBO	= 1E-9
+CJ	= 4.282017E-4	PB	= 0.9317787	MJ	= 0.4495867
+CJSW	= 3.034055E-10	PBSW	= 0.8	MJSW	= 0.1713852
+CJSWG	= 1.64E - 10	PBSWG	= 0.8	MJSWG	= 0.1713852
+CF	= 0	PVTH0	= 0.0520855	PRDSW	= 112.8875816
+PK2	= -0.0289036	WKETA	= -0.0237483	LKETA	= 1.728324E-3
*					
.MODEL C	MOSP PMOS (LEVEL	= 49
+VERSION	= 3.1	TNOM	= 27	TOX	= 1.42E-8
+XJ	= 1.5E-7	NCH	= 1.7E17	VTHO	= -0.9232867
+K1	= 0.5464347	K2	= 8.119291E-3	КЗ	= 5.1623206
+K3B	= -0.8373484	WO	= 1.30945E-8	NLX	= 5.772187E-8
+DVTOW	= 0	DVT1W	= 0	DVT2W	= 0
+DVT0	= 2.0973823	DVT1	= 0.5356454	DVT2	= -0.1185455
+00	= 220.5922586	UA	= 3.144939E-9	UB	= 1E-21
+UC	= -6.19354E-11	VSAT	= 1.176415E5	A0	= 0.8441929
+AGS	= 0.1447245	в0	= 1.149181E-6	B1	= 5E-6
+KETA	= -1.093365E-3	A1	= 3.467482E-4	A2	= 0.4667486
+RDSW	= 3E3	PRWG	= -0.0418549	PRWB	= -0.0212201
+WR	= 1	WINT	= 3.007497E-7	LINT	= 1.040439E-7
+XL	= 1E-7	XW	= 0	DWG	= -2.133809E-8
+DWB	= 1.706031E-8	VOFF	= -0.0801591	NFACTOR	= 0.9468597
+CIT	= 0	CDSC	= 2.4E-4	CDSCD	= 0
+CDSCB	= 0	ETAO	= 0.4060383	ETAB	= -0.0633609
+DSUB	= 1	PCLM	= 2.2703293	PDIBLC1	= 0.0279014
+PDIBLC2	= 3.201161E-3		3 = -0.057478	DROUT	= 0.1718548
+PSCBE1		PSCBE2		PVAG	= 0
+DELTA	= 0.01	RSH	= 105.3	MOBMOD	= 1
+PRT	= 0	UTE	= -1.5	KT1	= -0.11
+KT1L	= 0	KT2	= 0.022	UA1	= 4.31E-9
+UB1	= -7.61E - 18	UC1	= -5.6E - 11	AT	= 3.3E4
+WL	= 0	WLN	= 1	WW	= 0
+WWN	= 1	WWL	= 0	LL	= 0
+LLN	= 1	LW	= 0	LWN	= 1
+LWL	= 0	CAPMOD	= 2	XPART	= 0.5
+CGDO	= 3.12E - 10	CGSO	= 3.12E - 10	CGBO	= 1E - 9

)

+CJ	= 7.254264E-4	PB	= 0.9682229	MJ	= 0.4969013
+CJSW	= 2.496599E-10	PBSW	= 0.99	MJSW	= 0.386204
+CJSWG	= 6.4E - 11	PBSWG	= 0.99	MJSWG	= 0.386204
+CF	= 0	PVTHO	= 5.98016E-3	PRDSW	= 14.8598424
+PK2	= 3.73981E-3	WKETA	= 7.286716E-4	LKETA	= -4.768569E-3
*					

)

MOSIS WAFER ACCEPTANCE TESTS

RUN: T4BK (MM_NON-EPI_THK-MTL) TECHNOLOGY: SCN018 VENDOR: TSMC FEATURE SIZE: 0.18 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

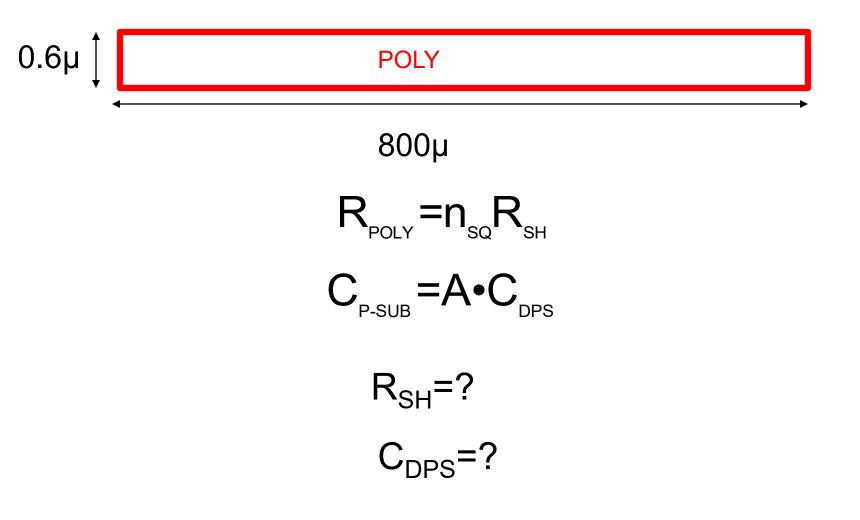
COMMENTS: DSCN6M018 TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.27/0.18	0.50	-0.53	volts
SHORT Idss Vth Vpt	20.0/0.18	571 0.51 4.7	-266 -0.53 -5.5	uA/um volts volts
WIDE Ids0	20.0/0.18	22.0	-5.6	pA/um
LARGE Vth Vjbkd Ijlk	50/50	0.42 3.1 <50.0	-0.41 -4.1 <50.0	volts volts pA
K' (Uo*Cox/2) Low-field Mobility		171.8 398.02	-36.3 84.10	uA/V^2 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in vour SPICE model card.

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Poly	>6.6	<-6.6	volts

⇒	PROCESS PARAMETERS Sheet Resistance Contact Resistance	N+ 6.6 10.1	P+ 7.5 10.6			+BLK 51.0		2LY+ 317	-BLK 7.1	(M1 0.08	M2 0.08 4.18		
•	ROCESS PARAMETERS Sheet Resistance Contact Resistance	M3 0.08 8.97	POLY_ 991		м 0.0 14.0	08		M5 0.0 8.8	8		M6 0.01 1.44	N_W 941	UNITS Lohms/s ohms	q
	COMMENTS: BLK is silicited te: substrate for p+ is the CAPACITANCE PARAMETE Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (metal1) Area (metal2) Area (metal3) Area (metal3) Area (metal4) Area (metal5) Area (r well) Area (d well) Area (no well) Fringe (substrate) Fringe (metal1) Fringe (metal2) Fringe (metal3) Fringe (metal3) Fringe (metal3) Fringe (metal3) Fringe (metal4) Fringe (metal4) Fringe (metal4) Fringe (metal4) Fringe (metal5)	n-well RS N+	k. P+ 1152 201	POLY 103 8566 8324	39 54 64 18 69	19 21 18 44 61 39 61	13 14 10 16 38 55 29 35 54	9 11 7 10 15 40 43 24 37	8 10 7 9 15 37 25	3 9 5 7 9 14 36 19 21 24 31	R_W 574	D_N_W 129	_	UNITS aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um aF/um aF/um aF/um aF/um aF/um aF/um aF/um
	Overlap (P+active)			652										aF/um


T4BK SPICE BSIM3 VERSION 3.1 PARAMETERS SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 * DATE: Jan 21/05 * LOT: T4BK WAF: 3004 * Temperature parameters=Default .MODEL CMOSN NMOS (LEVEL = 49 +VERSION = 3.1TNOM = 27 TOX = 4E - 9+XJ = 1E-7NCH = 2.3549E17 VTH0 = 0.3662648 +K1 = 0.5802748 K2 = 3.124029E-3K3 = 1E - 3+K3B = 3.3886871 WØ = 1E-7NLX = 1.766159E-7+DVTØW = 0 DVT1W = 0 DVT2W = 0 +DVT0 = 1.2312416 DVT1 = 0.3849841DVT2 = 0.0161351 +U0 = 265.1889031= -1.506402E-9UB = 2.489393E - 18UA +UC = 5.621884E - 11VSAT = 1.017932E5A0 = 2 +AGS = 0.4543117 BØ = 3.433489E-7B1 = 5E-6+KETA = -0.0127714A1 = 1.158074E-3A2 = 1 +RDSW = 136.5582806PRWG = 0.5 PRWB = -0.2= 0 +WR = 1 WINT LINT = 1.702415E-8+XL = 0 XW = -1E - 8DWG = -4.211574E-9= 1.107719E-8 +DWB VOFF = -0.0948017 NFACTOR = 2.1860065+CIT = 0 CDSC = 2.4E-4CDSCD = 0 ETAB +CDSCB = 0 ETA0 = 3.335516E-3 = 6.028975E-5+DSUB PCLM = 0.0214781 = 0.6602119 PDIBLC1 = 0.1605325+PDIBLC2 = 3.287142E-3 PDIBLCB = -0.1DROUT = 0.7917811 PSCBE2 = 4.122516E-9 +PSCBE1 = 6.420235E9PVAG = 0.0347169 +DELTA RSH = 6.6 MOBMOD = 1= 0.01 +PRT UTE KT1 = -0.11= 0 = -1.5 +KT1L KT2 = 0.022 UA1 = 4.31E-9= 0 +UB1 = -7.61E - 18UC1 = -5.6E - 11AT = 3.3E4+WL = 0 WLN = 1 = 0 WW = 1 = 0 LL = 0 +WWN WWL +LLN = 1 LW = 0 LWN = 1 = 0 XPART = 0.5 +LWL CAPMOD = 2+CGDO = 8.06E-10 CGSO = 8.06E - 10CGBO = 1E - 12+CJ = 9.895609E-4 PB = 0.8 MJ = 0.3736889 +CJSW = 2.393608E-10 PBSW MJSW = 0.1537892 = 0.8 +CJSWG = 3.3E - 10PBSWG = 0.8 MJSWG = 0.1537892 +CF = 0 **PVTHØ** PRDSW = -1.73163E-3= -1.4173554 +PK2 = 1.600729E-3WKETA = -3.255127E-3= 1.601517E-3 LKETA +PU0 = 5.2024473 PUA = 1.584315E-12PUB = 7.446142E-25+PVSAT = 1.686297E3 PETAØ PKETA = 1.001594E-4= -2.039532E-3

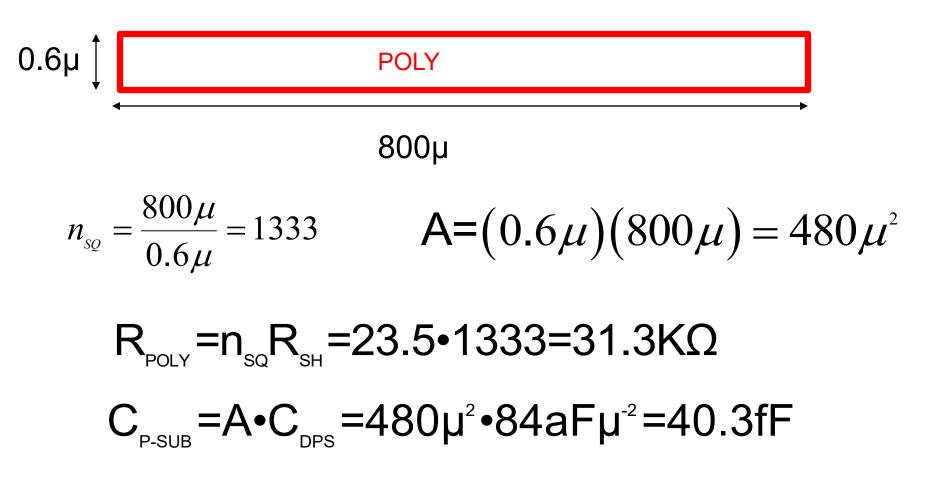
)

*

.MODEL CMOSP PMOS (LEVEL = 49
+VERSION = 3.1	TNOM = 27	TOX = 4E-9
+XJ = 1E-7	NCH = 4.1589E17	VTH0 = -0.3708038
+K1 = 0.5895473	K2 = 0.0235946	K3 = 0
+K3B = 13.8642028	W0 = 1E-6	NLX = 1.517201E-7
+DVT0W = 0	DVT1W = 0	DVT2W = 0
+DVT0 = 0.7885088	DVT1 = 0.2564577	DVT2 = 0.1
+U0 = 103.0478426	UA = 1.049312E-9	UB = 2.545758E-21
+UC = -1E - 10	VSAT = 1.645114E5	A0 = 1.627879
+AGS = 0.3295499	B0 = 5.207699E-7	B1 = 1.370868E-6
+KETA = 0.0296157	A1 = 0.4449009	A2 = 0.3
+RDSW = 306.5789827	PRWG = 0.5	PRWB = 0.5
+WR = 1	WINT = Ø	LINT = 2.761033E-8
+XL = 0	XW = -1E-8	DWG = -2.433889E-8
+DWB = -9.34648E-11	VOFF = -0.0867009	NFACTOR = 2
+CIT = 0	CDSC = 2.4E-4	CDSCD = 0
+CDSCB = 0	ETA0 = 1.018318E-3	ETAB = -3.206319E-4
+DSUB = 1.094521E-3	PCLM = 1.3281073	PDIBLC1 = 2.394169E-3
+PDIBLC2 = -3.255915E-6		DROUT = 0
+PSCBE1 = 4.881933E10	PSCBE2 = 5E-10	PVAG = 2.0932623
+DELTA = 0.01	RSH = 7.5	MOBMOD = 1
+PRT = 0	UTE = -1.5	KT1 = -0.11
+KT1L = 0	KT2 = 0.022	UA1 = 4.31E-9
+UB1 = -7.61E-18	UC1 = -5.6E-11	AT = 3.3E4
+WL = 0	WLN = 1	WW = 0
+WWN = 1	WUL = 0	LL = 0
+LLN = 1	LW = 0	LWN = 1
+LWL = 0	CAPMOD = 2	XPART = 0.5
+CGDO = 6.52E-10	CGS0 = 6.52E-10	CGBO = 1E-12
+CJ = 1.157423E-3	PB = 0.8444261	MJ = 0.4063933
+CJSW = 1.902456E-10		MJSW = 0.3550788
+CJSWG = 4.22E-10	PBSWG = 0.8	MJSWG = 0.3550788
+CF = 0	PVTH0 = 1.4398E-3	PRDSW = 0.5073407
+PK2 = 0 +PK2 = 2.190431E-3	WKETA = 0.0442978	LKETA = -2.936093E-3
+PKZ = 2.190451E-5 +PU0 = -0.9769623	PUA = -4.34529E-11	
+PU0 = -0.9769623 +PVSAT = -50	PUA = -4.34529E-11 PETA0 = 1.002762E-4	
+PVSAT = -50 *	PETAU = 1.002/02E-4	PRETA = -0.740430E-3

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used. Consider both 0.5u and 0.18u processes.

For 0.5u process	SCMOS_SUBM SCMOS (lambo	•	0)	0.10 0.00	
FOX TRANSISTORS Vth	GATE Poly	N+ACTIVE >15.0	P+ACTIVE <-15.0	UNITS volts	R _{SH} =23.5Ω/□
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	64.9 149.7	23.5 9	Y2_HR POL 99 44. 29.	2 0.09	M2 UNITS 0.10 ohms/sm 0.97 ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance	M3 0.05 0.79	N\PLY 824	N_W 816	UNITS ohms/sq ohms	
COMMENTS: N\POLY is N- Note: substrate for p+ is the	-	olysilicon.			C _{DPS} =84 af/µ ²

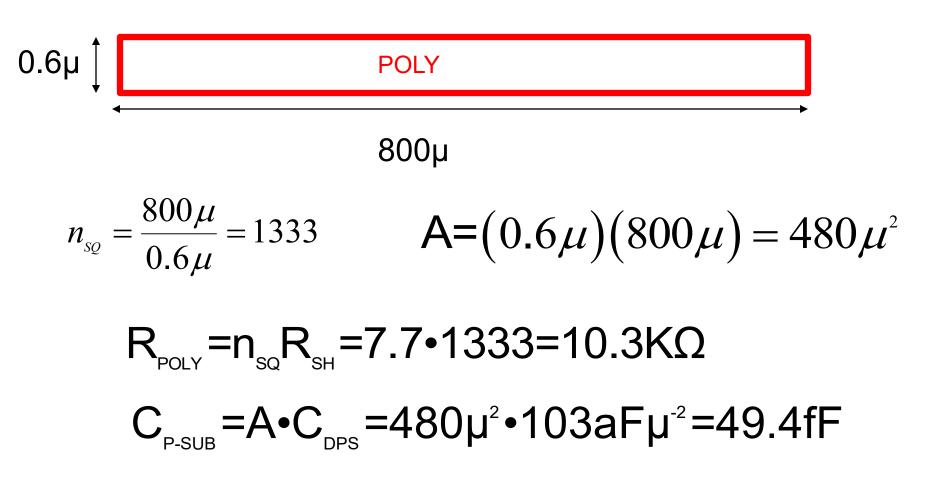

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	МЗ	N W UNITS
Area (substrate)	425	731	84		27	12	7	37 [aF/um^2]
Area (N+active)			2434		35	16	11	ar/cur 2
Area (P+active)			2335					aF/um^2
Area (poly)				938	56	15	9	aF/um^2
Area (poly2)					49			aF/um^2
Area (metal1)						31	13	aF/um^2
Area (metal2)							35	aF/um^2
Fringe (substrate)	344	238			49	33	23	aF/um
Fringe (poly)					59	38	28	aF/um
Fringe (metal1)						51	34	aF/um
Fringe (metal2)							52	aF/um
Overlap (N+active)			232					aF/um
Overlap (P+active)			312					aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

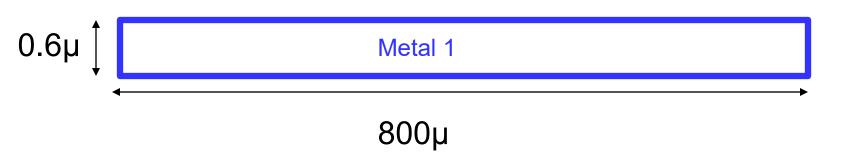
For 0.5u process

Example For 0.50

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.


For 0.18u process

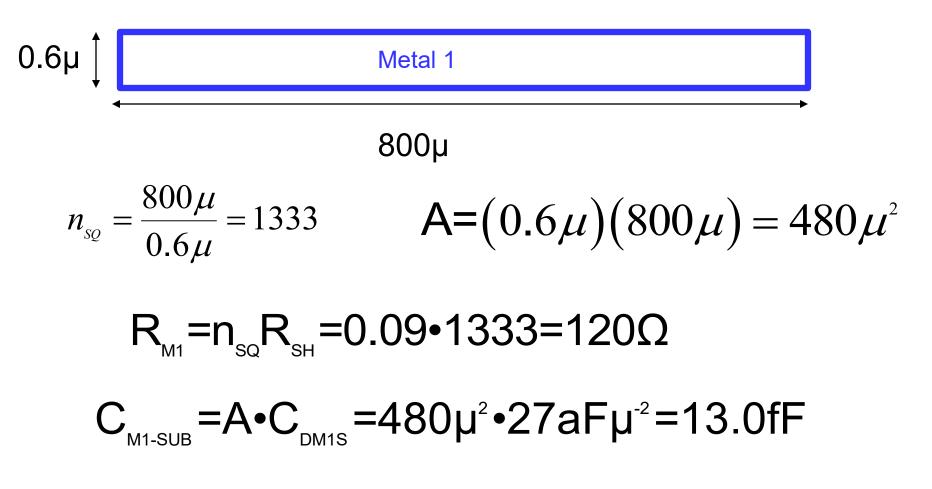
Sheet R	PARAMETERS Resistance Resistance	N+ 6.0 10.1		.5 7.7	$\overline{\mathbf{v}}$	N+E 61	8LK .0		Y+B 317.		М1 0.0		M2 0.0 4.1	8 6	NTTS hms/s hms	-	7.7Ω/□]
PROCESS	PARAMETERS	МЗ	POL	Y HRI		M4			M5		M6	5	N W		UNIT	0.1		
Sheet Re	esistance	0.08		91.5		0.0	B	0	.08		0.0		94		ohms			
Contact	Resistance	8.97			1	4.0	9	18	.84		21.4	4			ohms			
COMMENTS: Note: substrate	BLK is silicion for p+ is the n-w	de blo ell	ck.												C_{DP}	_s =103	3 af/µ²	
CAPACITAN	ICE PARAMETERS	N+	P+	POLY	Μ1	M2	ΜЗ	Μ4	M5	M6	R_W	D_N	_W	M5P	N_W	UNITS		
Area (si	ubstrate)	998	1152	103	39	19	13	9	8	3		1	29		127	aF/um	^2	
Area (Na	⊦active)			8566	54	21	14	11	10	9						aF/um/	^2	
Area (Pa	⊦active)			8324												aF/um′	^2	
Area (po	oly)				64	18	10	7	6	5						aF/um′	^2	
Area (me	etal1)					44	16	10	7	5						aF/um′	^2	
Area (me	etal2)						38	15	9	7						aF/um′	^2	
Area (me	etal3)							40	15	9						aF/um′	^2	
Area (me	etal4)								37	14						aF/um′	^2	
Area (me	etal5)									36			1	1003		aF/um′	^2	
Area (r	well)	987														aF/um′	^2	
Area (d	well)										574					aF/um′	^2	
Area (no	o well)	139														aF/um′	^2	
Fringe ((substrate)	244	201		18	61	55	43	25							aF/um		
Fringe ((poly)				69	39	29	24	21	19						aF/um		
Fringe ((metal1)					61	35		23	21						aF/um		
Fringe ((metal2)						54	37	27	24						aF/um		
Fringe ((metal3)							56	34	31						aF/um		
Fringe ((metal4)								58	40						aF/um		
Fringe ((metal5)									61						aF/um		
0verlap	(P+active)			652												aF/um		


For 0.18u process

Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M₁ were used.

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used. Do this for both a 0.5u and a 0.18u process.

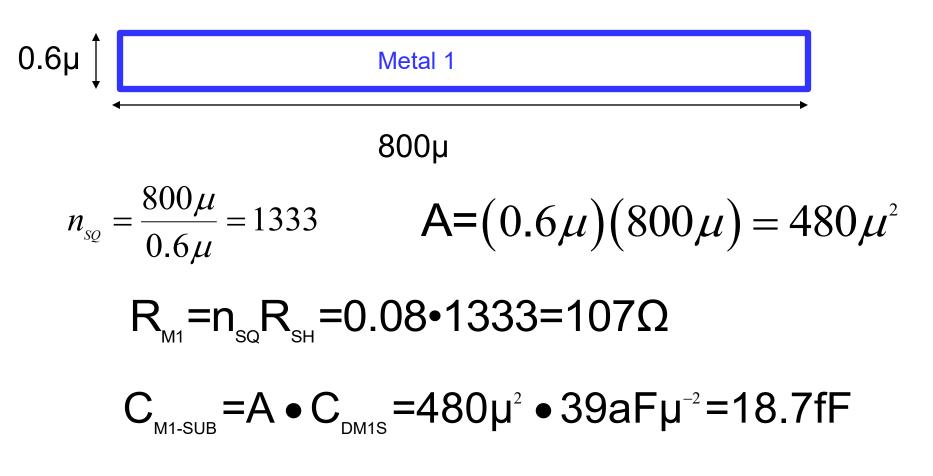


For 0.5u pro	Cess s			(lambda= da=0.35)				0.10 0.00	-).00).20	
FOX TRAI	NSISTORS	GA	TE	N+ACTI	IVE P+2	ACTIVE	UNI	TS			
Vth		Po	ly	>15	.0 <-	-15.0	vol	ts			
										R _{SH} =(D.09Ω/□
PROCESS	PARAMETERS N	N+	P+	POLY	PLY2 H	IR PO	DLY2	M1	M2	UNITES	
Sheet 1	Resistance 8	83.5	105.3	23.5	999	44	1.2 🤇	0.09	0.10	ohms/sq	
Contact	t Resistance (64.9	149.7	17.3		29	9.2		0.97	onms	
Gate O	kide Thickness 14	42								angstrom	
PROCESS	PARAMETERS		МЗ	N\PLY	N	W	UNI	TS			
Sheet 1	Resistance		0.05	824	_	316	ohm	ls/sq			
Contact	t Resistance		0.79				ohm	IS			
	S: N\POLY is N-we ate for p+ is the n		nder p	olysilid	30n.				C	_{DPS} =27	af/µ²
CAPACITA	ANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2		37 57	UNITS	
Area (s	substrate)	105				10	F12	M3	N W	UNITS	
		425	731	84		27	12	МЗ 7	N_W 37	aF/um^2	
Area (1	N+active)	425		84 2434					_		
-		425				27	12	7	_	aF/um^2	
-	N+active) P+active)	425		2434	938	27	12	7	_	aF/um^2 ar/um^2	
Area (1 Area (1 Area (1	N+active) P+active) poly) poly2)	425		2434		27 35	12 16 15	7 11 9	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ²	
Area (1 Area (1 Area (1 Area (1	N+active) P+active) poly) poly2) metall)	425		2434		27 35 56	12 16	7 11 9 13	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ²	
Area () Area () Area () Area () Area ()	N+active) P+active) poly) poly2) metal1) metal2)			2434		27 35 56 49	12 16 15 31	7 11 9 13 35	_	aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2	
Area () Area () Area () Area () Area () Fringe	N+active) P+active) poly) poly2) metal1) metal2) (substrate)	425 344		2434		27 35 56 49 49	12 16 15 31 33	7 11 9 13 35 23	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ²	
Area () Area () Area () Area () Area () Fringe Fringe	N+active) P+active) poly) poly2) metal1) metal2) (substrate) (poly)			2434		27 35 56 49	12 16 15 31 33 38	7 11 9 13 35 23 28	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um	
Area (1 Area (1 Area (1 Area (1 Area (1 Area (1 Fringe Fringe Fringe	N+active) P+active) poly) poly2) metal1) metal2) (substrate) (poly) (metal1)			2434		27 35 56 49 49	12 16 15 31 33	7 11 9 13 35 23 28 34	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um aF/um aF/um	
Area (1 Area (1 Area (1 Area (1 Area (1 Fringe Fringe Fringe Fringe Fringe	N+active) P+active) poly) poly2) metal1) metal2) (substrate) (poly) (metal1) (metal2)			2434 2335		27 35 56 49 49	12 16 15 31 33 38	7 11 9 13 35 23 28	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um aF/um aF/um aF/um aF/um	
Area (1 Area (1 Area (1 Area (1 Area (1 Fringe Fringe Fringe Fringe Overlag	N+active) P+active) poly) poly2) metal1) metal2) (substrate) (poly) (metal1)			2434		27 35 56 49 49	12 16 15 31 33 38	7 11 9 13 35 23 28 34	_	aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um ² aF/um aF/um aF/um	

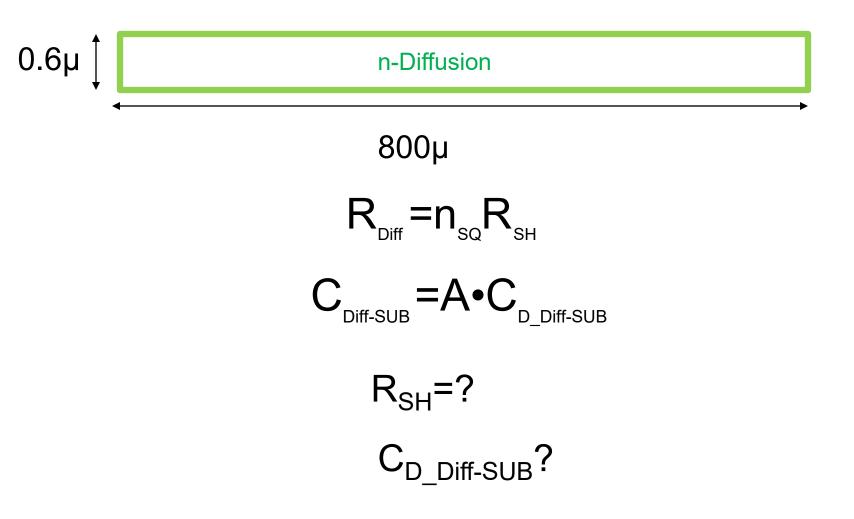
CIRCUIT PARAMETERS			UNITS
Inverters	к		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Example For 0.5u process

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.



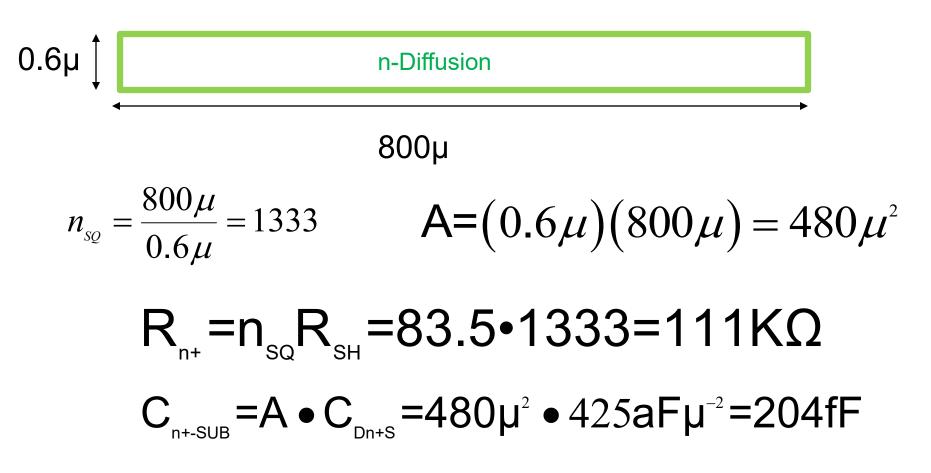
For 0.18u process


PROCESS PARAMETERS Sheet Resistance Contact Resistance PROCESS PARAMETERS Sheet Resistance	N+ 6.6 10.1 M3 0.08	POLY		(N+BI 61 M4 0.02	.0 8	31 1 0	/+BL 17.1 15 .08	L	M1 0.08 M6 0.03	4.18 N_1 1 94	3 oh 3 oh	$R_{SH} = 0.08\Omega/\Box$
Contact Resistance COMMENTS: BLK is silici Note: substrate for p+ is the n	well				4.0			.84		21.44			ohms C _{DPS} =39 af/µ ²
CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active)		P+ 1152	POLY 103 8566 8324	39	19		9	8	M6 3 9	R_W	D_N_W 129	M5P	N_W UNITS 127 aF/um^2 aF/um^2 aF/um^2
Area (poly) Area (metal1) Area (metal2)			0.2.1	64		10 16 38	10 15	7 9	7				aF/um^2 aF/um^2 aF/um^2
Area (metal3) Area (metal4) Area (metal5)	0.07						40	15 37				1003	aF/um^2 aF/um^2 aF/um^2
Area (r well) Area (d well) Area (no well) Fringe (substrate)	987 139 244	201		18	61	55	43	25		574			aF/um^2 aF/um^2 aF/um^2 aF/um
Fringe (bubstrate) Fringe (poly) Fringe (metal1) Fringe (metal2)	211	201			39	29 35	24		21				aF/um aF/um aF/um
Fringe (metal3) Fringe (metal4) Fringe (metal5)							56	34 58	31 40 61				aF/um aF/um aF/um
Overlap (P+active)			652										aF/um

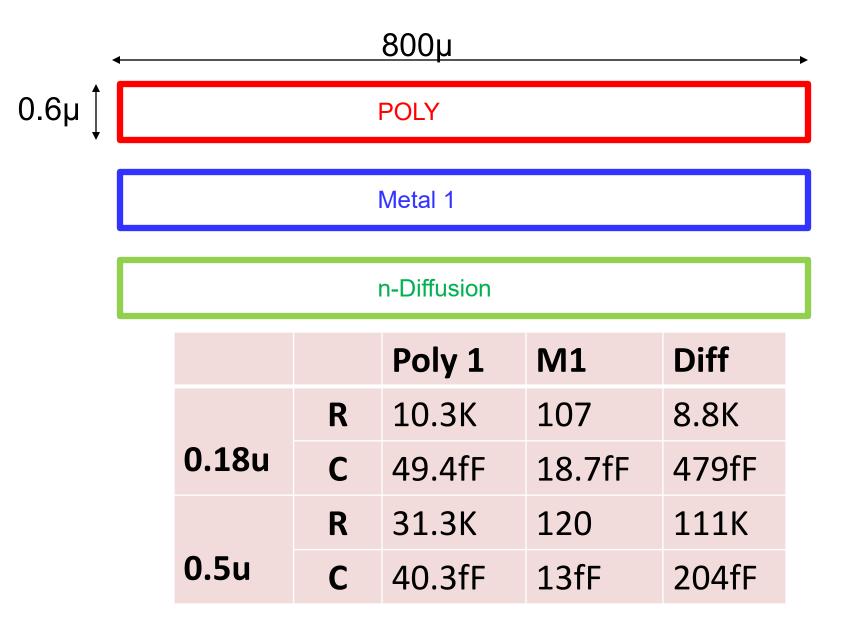
Example For 0.18u process

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.

Compare the resistance and capacitance of a n+ diffusion interconnect that is 0.6u wide and 800u long with what would be obtained with a Poly and a M_1 interconnet. Assume a 0.5u process.



For 0.5u process	SCMOS_SUBM (SCMOS (lambd))	0.10 0.00	
FOX TRANSISTORS Vth	GATE Poly	N+ACTIVE >15.0	P+ACTIVE <-15.0	UNITS volts	R _{SH} =83.5Ω/□
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thicknes	N+ P+ 83.5 105.3 64.9 149.7 ss 142		2_HR POL 99 44.2 29.2	2 0.09	M2 UNITS 0.1 ohms/sy 0.97 ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance	M3 0.05 0.79	N\PLY 824	N_W 816	UNITS ohms/sq ohms	
COMMENTS: N\POLY is	N-well under po	lysilicon.			C _{DPS} =425 af/µ ²


CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	M3	N_W	UNITS
Area (substrate)	425	731	84		27	12	7	37	aF/um^2
Area (N+active)			2434		35	16	11		ar/um 2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Compare the resistance and capacitance of a n+ diffusion interconnect that is 0.6u wide and 800u long with what would be obtained with a Poly and a M_1 interconnet. Assume a 0.5u process.

Comparison of 3 types of interconnects

Stay Safe and Stay Healthy !

End of Lecture 11